Quiz \#5 - Takehome Computational Fluid Dynamics I Prof. V. Esfahanian

1. Consider the following eigenvalue problem:

$$
\begin{gathered}
-\nu^{\prime \prime}(x)=\gamma \nu(x), \quad 0<x<1 \\
\nu^{\prime}(0)=0=\nu^{\prime}(1)
\end{gathered}
$$

(a) Show that employing one-sided finite difference scheme at the boundaries (backward and forward) as well as use of following discretization in the uniform grid $h=1 / N, \quad i=0,1,2, \ldots, N, \quad x_{i}=-h / 2+i h$ result in a matrix form equation depicted below:

$$
\begin{gathered}
-V_{n-1}+2 V_{n}-V_{n+1}=\lambda V_{n}, \quad n=1,2, \ldots . N \\
V_{1}-V_{0}=0=V_{N+1}-V_{N} \\
{\left[\begin{array}{ccccc}
1 & -1 & & & \\
-1 & 2 & -1 & & \\
& & & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
\vdots \\
\vdots \\
V_{N-1} \\
V_{N}
\end{array}\right]=\lambda\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
\vdots \\
\vdots \\
\\
V_{N-1} \\
V_{N}
\end{array}\right]}
\end{gathered}
$$

(b) Prove that the eigenvales of matrix A are as follow:

$$
\lambda_{n}=2-2 \cos \frac{(n-1) \pi}{N}, \quad n=1,2, . ., N
$$

and the corresponding eigenvectors are:
(c) without any mathematical operations prove that $V_{n} \cdot V_{m}=0$ for $n \neq m$ (hint: $A=A^{T}$)
(d) show that $V_{1} \cdot V_{1}=N, V_{n} \cdot V_{n}=N / 2$ for $n=2,3, . ., N$

$$
V_{n}=\left[\begin{array}{c}
\cos (n-1) \pi x_{1} \\
\cos (n-1) \pi x_{2} \\
\vdots \\
\vdots \\
\cos (n-1) \pi x_{N}
\end{array}\right] \quad n=1,2, \ldots, N
$$

